
Information System of Silver Oaks Cooperative School
Design Proposal

1. State mission statement(s) and mission objectives for the client.

1. Silver Oaks Cooperative School Information System is a system that helps the school
to manage all the applicants’ information during the application process (including
subscribers) and allocate those accepted students to different classes and staff
(teachers).
2. Apart from those, school can also manage the information of the enrolled students
and award the top students by sorting the grades.
3. Besides, by building relationships among the tables, school can easily deal with staff
resignation, student transfer and etc..
4. The system can also manage the subscribers who are interested in getting up-to-date
information of the school.

2. Finalize ER schema and diagram.

Entities, Attributes, and Primary Keys:

Student: stuId, stuName, -stuFirstName, -stuLastName, stuAddress, -stuStreet, -
stuCity, -stuState, -stuZip, stuPhone, stuTuitionFee, stuCoOpStatus, stuGrade[],
algFood[], algDrugs[], stuEnrollDate
Staff: staId, sName, -sFirstName, -sLastName, sPhone, sEmail, sAddress, -sStreet, -
sCity, -sState, -sZip, sPosition, sSalary
Member: mId, mName, -mFirstName, -mLastName, mEmail, mAddress, -mStreet, -
mCity, -mState, -mZip, mJob, mPhone,mCoOpStatus, mPreferDay[],mNoCoOpDay
Class: cId, cName, cLevel, cDescription,cLocation
Task: tId, tContent

Relationship, Degrees and Participating Entities:

Teach: ternary relationship
 1 student and 1 staff to 1 class
 1 class and 1 student to 1 staff
 1 class and 1 staff to 1 or many students
Assign: binary relationship
 1 staff to 0 or many classes
 1 class to 1 staff
Guard: binary relationship
 1 student to 1 member
 1 member to 1 or many students
Perform: binary relationship
 1 member to 0 or 1 tasks

 1 task to 1 or many members

ER Diagram:

3. Convert ER model into relational schema and identify primary and foreign keys.

Relational schema

Student(stuId, stuFirstName, stuLastName, stuStreet, stuCity, stuState, stuZip,
stuPhone, stuTuitionFee, stuCoOpStatus, stuGrade, algFood, algDrugs, stuEnrollDate,
mId)
Staff(staId, sFirstName, sLastName, sPhone, sEmail, sStreet, sCity, sState, sZip,
sPosition, sSalary)
Member(mId, mFirstName, mLastName, mEmail, mStreet, mCity, mState, mZip, mJob,
mPhone,mCoOpStatus, mPreferDay, mNoCoOpDay)
Class(cId, cName, cLevel, cDescription,cLocation, staId)
Task(tId, mId , tContent)
Teach(cId, staId, stuId)

4. Determine functional dependencies and perform normalization to 3NF.

FDs in 3NF

stuId —> stuFirstName, stuLastName, stuStreet, stuCity, stuState, stuZip, stuPhone,
stuTuitionFee, stuCoOpStatus, stuGrade, algFood, algDrugs, stuEnrollDate
sId —> sFirstName, sLastName, sPhone, sEmail, sStreet, sCity, sState, sZip,
sPosition, sSalary
mId —> mFirstName, mLastName, mEmail, mStreet, mCity, mState, mZip, mJob,
mPhone,mCoOpStatus, mPreferDay, mNoCoOpDay, stuId
cId —> cName, cLevel, cDescription,cLocation
tId, mId —> tContent
cId, staId, stuId —>

Normalization:
Student(stuId, stuFirstName, stuLastName, stuStreet, stuCity, stuState, stuZip,
stuPhone, stuTuitionFee, stuCoOpStatus, stuGrade, algFood, algDrugs, stuEnrollDate,
mId)
Staff(staId, sFirstName, sLastName, sPhone, sEmail, sStreet, sCity, sState, sZip,
sPosition, sSalary)
Member(mId, mFirstName, mLastName, mEmail, mStreet, mCity, mState, mZip, mJob,
mPhone,mCoOpStatus, mPreferDay, mNoCoOpDay)
Class(cId, cName, cLevel, cDescription,cLocation, staId)
Task(tId, mId , tContent)
Teach(cId, staId, stuId)

5. Generate business rules and determine referential integrity actions.

Business Rules:

[R1] When a child was enrolled as a student or change guardian, the corresponding
member information should be updated.
[R2] When a student graduates from school or drops out school, the corresponding
member information should be deleted.
[R3] When a task is performed by a member, the corresponding task information
should be updated .
[R4] When a member stops performing a task, the corresponding task information
should be deleted.
[R5] When a staff is assigned to a class, the corresponding class information should be
updated.
[R6] When a staff stops teaching a class, the corresponding class information should
be deleted.
[R7] When a class is assigned a staff and registered by a student, the class, the staff
and the student information cannot be updated or deleted in the database.

Referential Integrity:

Relation Foreign
Key

Base
Relation

Primary
Key

Business
Rule

Constraint: ON
DELETE

Business
Rule

Constraint: ON
UPDATE

student mId member mId R2 SET NULL R1 CASCADE

task mId member mId R3 CASCADE R4 CASCADE

class staId staff staId R5 CASCADE R6 CASCADE

Teach staId staff staId R9 NO ACTION R9 NO ACTION

Teach cId Class cId R9 NO ACTION R9 NO ACTION

Teach stuId Student stuId R9 NO ACTION R9 NO ACTION

6. Describe sample data for every relation.

CREATE TABLE [Student] (
stuId CHAR(9) NOT NULL,
stuFirstName VARCHAR(20),
stuLastName VARCHAR(20),
stuStreet VARCHAR(40),
stuCity VARCHAR(20),
stuState CHAR(2),
stuZip CHAR(5),
stuPhone CHAR(12),
stuTuitionFee DECIMAL(10,2),
stuCoOpStatus VARCHAR(10),
stuGrade VARCHAR(10),
algFood VARCHAR(100)
algDrugs VARCHAR(100)
stuEnrollDate DATE,

 CONSTRAINT pk_Student_stuId PRIMARY KEY (stuId),
CONSTRAINT fk_Student_mId FOREIGN KEY (mId)

REFERENCES [Member] (mId)
ON UPDATE CASCADE
ON DELETE SET NULL

);

CREATE TABLE [Staff] (
 staId CHAR (9) NOT NULL,
 sFirstName VARCHAR (40),

sLastName VARCHAR (40),
 sPhone CHAR (12),
 sEmail VARCHAR(40),
 sSalary DECIMAL (7,2),
 sStreet VARCHAR(20),
 sCity CHAR(10),
 sState CHAR(2),
 sZip CHAR(5),
 sPosition VARCHAR(20),
 sSalary DECIMAL(7,2)
 CONSTRAINT pk_Staff_staId PRIMARY KEY (staId)
);

CREATE TABLE [Class] (
 cId CHAR (9) NOT NULL,

cName VARCHAR (40),
 cLevel VARCHAR (20),
 cDescription VARCHAR(60),
 cLocation VARCHAR(40),
 staId CHAR(9),

 CONSTRAINT pk_Class_cId PRIMARY KEY (cId),
 CONSTRAINT fk_Class_staId FOREIGN KEY(staId)
 REFERENCES [Staff] (staId)
 ON DELETE CASCADE

ON UPDATE CASCADE
);

CREATE TABLE [Member] (

mId CHAR(9) NOT NULL,
mFirstName VARCHAR(20),
mLastName VARCHAR(20),
mEmail VARCHAR(20),
mStreet VARCHAR(40),
mCity VARCHAR(20),
mState CHAR(2),
mZip CHAR(5),
mJob VARCHAR(40),
mPhone CHAR(12)
stuId CHAR(9),

 CONSTRAINT pk_Member_gId PRIMARY KEY (mId),
);

CREATE TABLE [Teach] (
 cId CHAR (9) NOT NULL,
 stuId CHAR (9) NOT NULL,
 staId CHAR(9) NOT NULL,
 CONSTRAINT pk_Teach_cId_stuId_staId PRIMARY KEY (cId,stuId,staId),
 CONSTRAINT fk_Teach_staId FOREIGN KEY(staId)
 REFERENCES [Staff] (staId)

ON DELETE NO ACTION
ON UPDATE NO ACTION,

 CONSTRAINT fk_Teach_stuId FOREIGN KEY(stuId)
 REFERENCES [Student] (stuId)

ON DELETE NO ACTION
ON UPDATE NO ACTION,

 CONSTRAINT fk_Teach_cId FOREIGN KEY(cId)
 REFERENCES [Class] (cId),
 ON DELETE NO ACTION

ON UPDATE NO ACTION,

);

CREATE TABLE [Task] (
 tId CHAR (9) NOT NULL,
 mId CHAR (9) NOT NULL,

 tContent VARCHAR(40),
 CONSTRAINT pk_Task_tId_mId PRIMARY KEY (tId,mId),
 CONSTRAINT fk_Task_mId FOREIGN KEY(mId)
 REFERENCES [Member] (mId)
 ON DELETE CASCADE

ON UPDATE CASCADE
);

